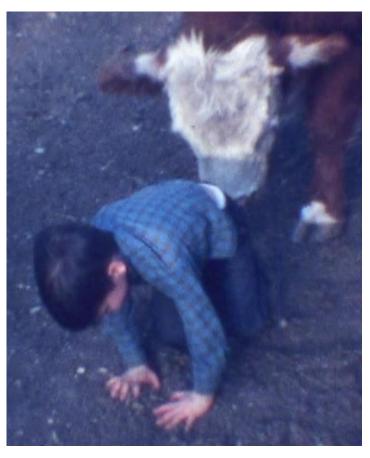


Quality • Productivity • Performance • Profitability

Job Rotation:

Are We Doing the **Right Thing?**

Tim Pottorff, MEng., CIE, ARM


2024 Assembly Show

Rosemont, IL

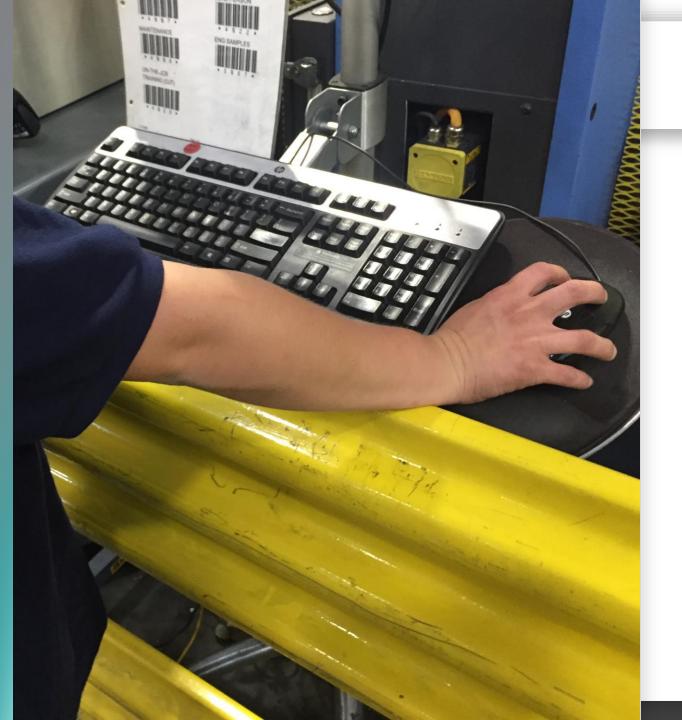
Quality • Productivity • Performance • Profitability

Fun Facts!

Agenda

What's going on with ergonomics

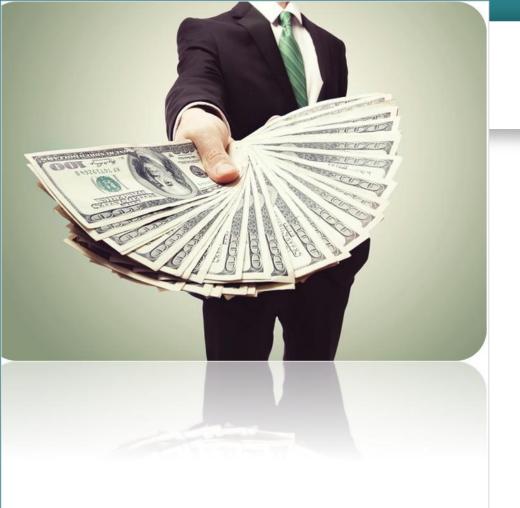
Traditional job rotation & fatigue failure


Prevention through design

Ergonomics

"Designing things for safe, efficient, and comfortable human use

Risk Factors


- Awkward postures
- Force exertion
- Extreme temperatures
- Glove use
- Vibration (hands/body)
- Repetition
- Extended duration of exposure
- Contact stress

Soft Tissue Days Away Claims

40% frequerion

40% severity

Financial Impact

Average case \$25,000

Deductibles \$250,000+

Profit margin?

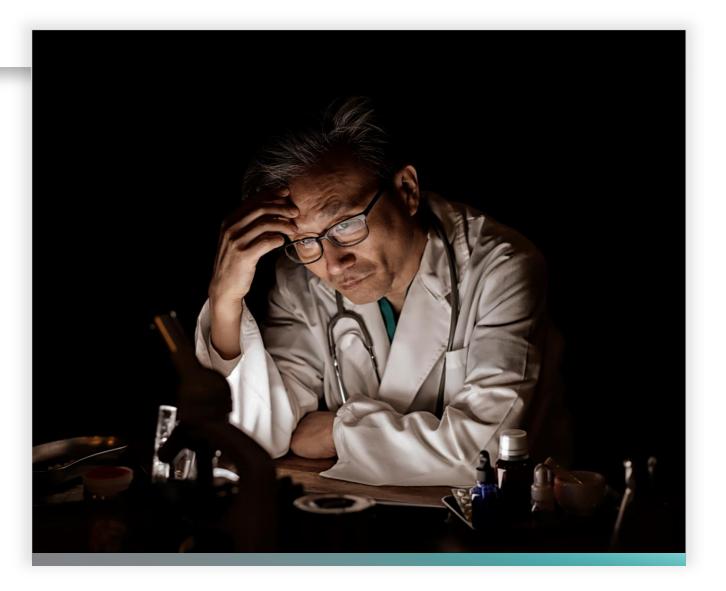
- How many more sales are required?
- Production Impact?
 - Overtime

Opioid Epidemic

- MSDs are a key contributor
- Women disproportionately affected
- Policies matter (public healthcare & insurance)
- Construction/Farming/Manufacturing/Nonprofits
- Job design is key
- Address pain & inflammation within 6 weeks
- Narcan helps but
- (My other talk)

Issues with MSDs

MSD Accelerators


Gender

Obesity

Fatigue/lack of sleep

Injury => Inflammation => Fibrosis (connective tissue scars) => Excessive Deposits (cartilage)

US Ergo Requirements

Federal OSHA

General duty clause—must address hazards

Minnesota (Jan 1, 2024)

- Healthcare facilities (hospitals, outpatient, nursing homes)
- Warehouse distribution center (more than 100 employees)
- Meatpacking/poultry processing site (more than 100 employees)

California

- •IIPP--conduct claims-related assessments
- Ergonomics Program Standard-general industry
- Seating Standard
- Hotel Housekeeper MIPP Standard-annual requirements

Maine

VDT training

Many States

Patient handling requirements

New Hampshire

• "Shall evaluate all incidences of ergonomically related injuries"

Washington (Jan 1, 2024)

Authorized to issue standards

Select International Requirements

Brazil

- Assess EACH workstation
- Gender & age specific MMH requirements

Mexico—all companies

- Must assess EACH workstation
- Ergonomics risk factors
- Material handling requirement

UK

- Comprehensive Standards & Requirements
- Display screens
- Material handling

EU

- Hazard Assessments of jobs
- Ergonomics
- Safety/Machine Guarding
- IH

Traditional Job Rotation

Moving employees between jobs to reduce physical stresses on people in "high stress" jobs

Challenges with Job Rotation

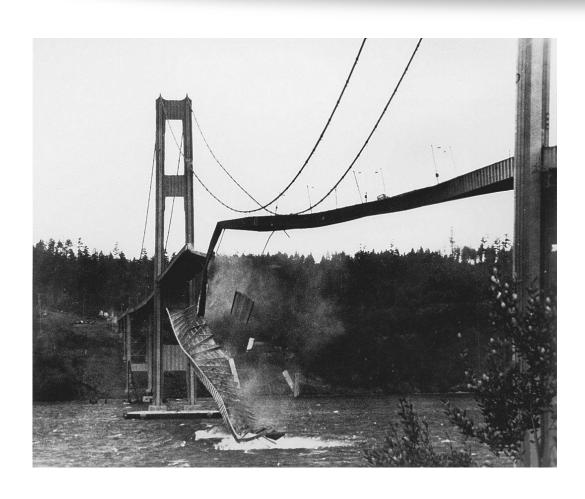
Need to use different parts of the body

Need to rotate frequently enough

Visual tasks

High intensity tasks

Fatigue Failure



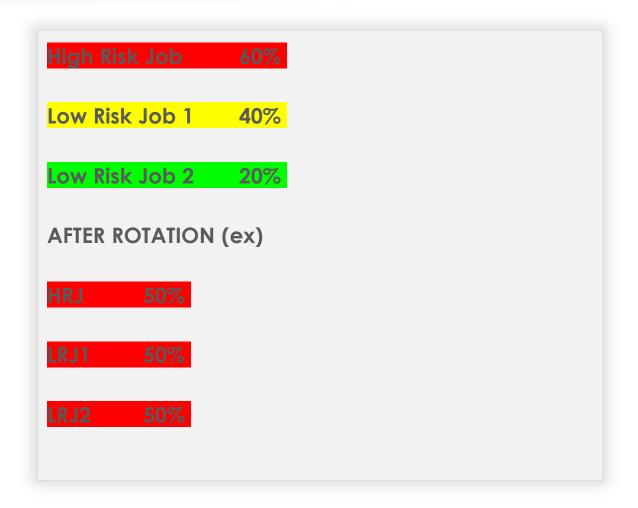
Tacoma Narrows Disaster

Fatigue Failure

Science Direct:

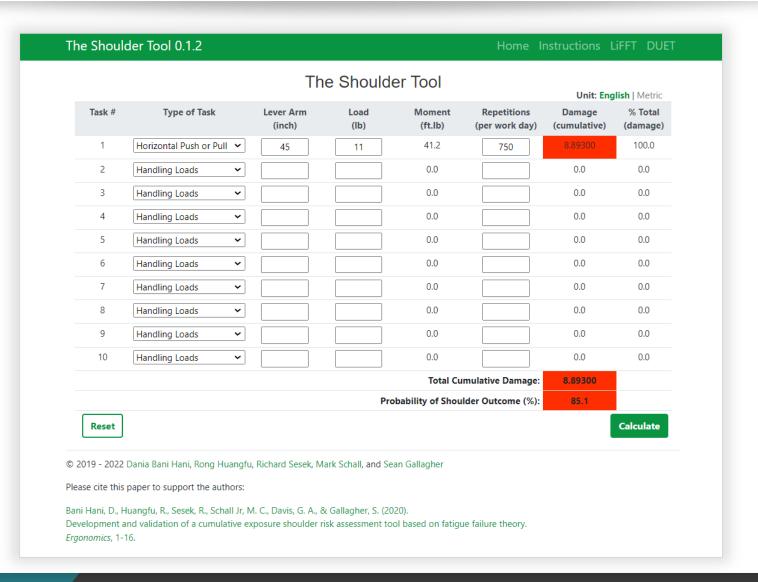
"A failure that occurs below the stress limit of a material when it has been exposed to repeated loadings"

Shoulders, Upper Extremities, Lifting


Unintended Consequences of Rotation

Rotating through a "high risk" job increases the risk for employees coming from "lower risk" jobs.

The entire rotation cycle must be assessed


Why? Fatigue Failure is at play

Damage per cycle is exponential, not linear

High Risk Job—Fatigue Failure Model

Low Risk Job—Fatigue Failure

The Shoulder Tool 0.1.2 Home Instructions LiFFT DUI

The Shoulder Tool

Unit: English | Metric

Task #	Type of Task	Lever Arm (inch)	Load (lb)	Moment (ft.lb)	Repetitions (per work day)	Damage (cumulative)	% Total (damage)
1	Horizontal Push or Pull 🗸	20	11	18.3	375	0.00841	100.0
2	Handling Loads 🕶			0.0		0.0	0.0
3	Handling Loads 🕶			0.0		0.0	0.0
4	Handling Loads 🕶			0.0		0.0	0.0
5	Handling Loads 🕶			0.0		0.0	0.0
6	Handling Loads 🕶			0.0		0.0	0.0
7	Handling Loads 🕶			0.0		0.0	0.0
8	Handling Loads 🕶			0.0		0.0	0.0
9	Handling Loads 🕶			0.0		0.0	0.0
10	Handling Loads 🕶			0.0		0.0	0.0
				Total Cu	mulative Damage:	0.00841	
			Pro	bability of Shou	lder Outcome (%):	25.7	

Reset

Calculate

© 2019 - 2022 Dania Bani Hani, Rong Huangfu, Richard Sesek, Mark Schall, and Sean Gallagher

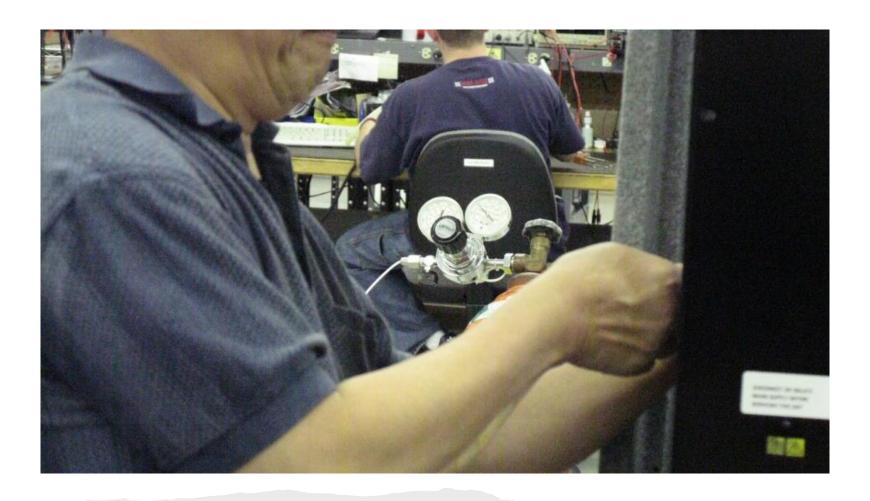
Please cite this paper to support the authors:

Bani Hani, D., Huangfu, R., Sesek, R., Schall Jr, M. C., Davis, G. A., & Gallagher, S. (2020). Development and validation of a cumulative exposure shoulder risk assessment tool based on fatigue failure theory. *Ergonomics*, 1-16.

Rotate Between the Two?

Unit: English | Metric

The Shoulder Tool 0.1.2 Home Instructions LiFFT DUE


The Shoulder Tool

						Unit: Eng	ilish Metric
Task #	Type of Task	Lever Arm (inch)	Load (lb)	Moment (ft.lb)	Repetitions (per work day)	Damage (cumulative)	% Total (damage)
1	Horizontal Push or Pull 🗸	20	11	18.3	187	0.00420	0.1
2	Horizontal Push or Pull 🗸	44	11	40.3	375	3.46018	99.9
3	Handling Loads 🗸			0.0		0.0	0.0
4	Handling Loads 🗸			0.0		0.0	0.0
5	Handling Loads 🕶			0.0		0.0	0.0
6	Handling Loads 🕶			0.0		0.0	0.0
7	Handling Loads 🕶			0.0		0.0	0.0
8	Handling Loads 🕶			0.0		0.0	0.0
9	Handling Loads 🕶			0.0		0.0	0.0
10	Handling Loads 🕶			0.0		0.0	0.0
				Total Cui	mulative Damage:	3.46438	
			P	robability of Shoul	der Outcome (%):	79.7	
Reset							Calculate

© 2019 - 2022 Dania Bani Hani, Rong Huangfu, Richard Sesek, Mark Schall, and Sean Gallagher

Please cite this paper to support the authors:

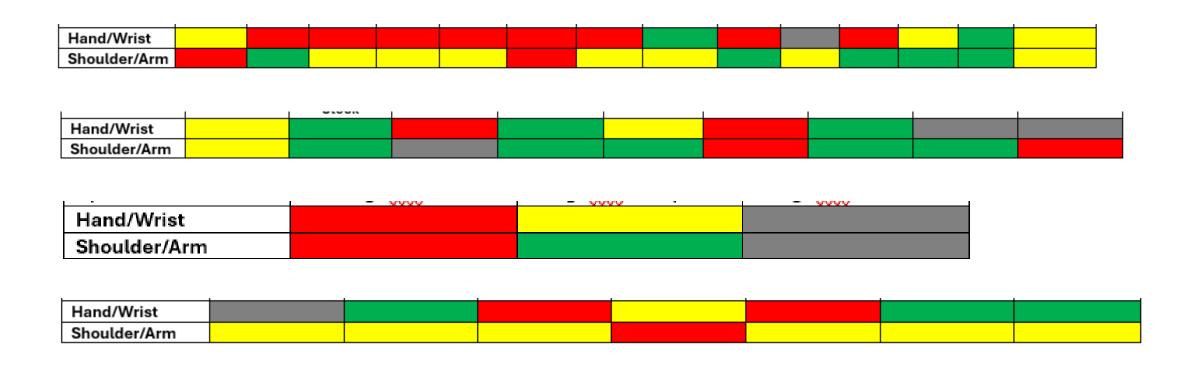
Bani Hani, D., Huangfu, R., Sesek, R., Schall Jr, M. C., Davis, G. A., & Gallagher, S. (2020). Development and validation of a cumulative exposure shoulder risk assessment tool based on fatigue failure theory. *Ergonomics*, 1-16.

Difficult to Do 1000 times/shift

Please cite this paper to support the authors:

Another Look

	The Distal Upper Extremity Tool						
Task#	OMNI-RES Scale	Repetitions (per work day)	Damage (cumulative)	% Total (damage)			
1	8: Hard	1000	1.05374	100.0			
2	Please select 🗸		0.0	0.0			
3	Please select 🗸		0.0	0.0			
4	Please select 🕶		0.0	0.0			
5	Please select 🔻		0.0	0.0			
6	Please select 🔻		0.0	0.0			
7	Please select 🕶		0.0	0.0			
8	Please select 🗸		0.0	0.0			
9	Please select 🕶		0.0	0.0			
10	Please select 🔻		0.0	0.0			
		Total Cumulative Damage:	1.05374				
	Probability of D	istal Upper Extremity Outcome (%):	64.3				


DUET 1.3.1		Home	Instructions	LiFFT	The Shoulder To
	The Di	stal Upper Extremity ⁻	Tool		
Task #	OMNI-RES Scale	Repetitions (per work day)	Dama (cumula	•	% Total (damage)
1	4: Somewhat Easy 🗸	1000	0.012	262	100.0
2	Please select 🗸		0.0)	0.0
3	Please select 🔻		0.0)	0.0
4	Please select 🔻		0.0)	0.0
5	Please select 🔻		0.0)	0.0
6	Please select 🕶		0.0)	0.0
7	Please select 🕶		0.0)	0.0
8	Please select 🕶		0.0)	0.0
9	Please select 💌		0.0)	0.0
10	Please select 🕶		0.0)	0.0
		Total Cumulative Dama	ge: 0.012	262	
	Probability of Di	stal Upper Extremity Outcome (%): 30.	0	
Reset					Calculate
© 2016 - 2023 Sean Gal Please cite this paper to	lagher, Richard Sesek, Mark Schall ar support the authors:	nd Rong Huangfu			

Human factors, 60(8), 1146-1162.

Rotating from A to B

		(per work day)	(cumulative)	(damage)
1	4: Somewhat Easy V	500	0.00631	1.2
2	8: Hard	500	0.52687	98.8
3	Please select 🔻		0.0	0.0
4	Please select 🔻		0.0	0.0
5	Please select 🔻		0.0	0.0
6	Please select 🔻		0.0	0.0
7	Please select 🔻		0.0	0.0
8	Please select 🔻		0.0	0.0
9	Please select v		0.0	0.0
10	Please select 🕶		0.0	0.0
		Total Cumulative Damag	je: 0.53318	
	Probability of Dist	al Upper Extremity Outcome (%	%): 59.1	
Reset				Calculate
016 - 2023 Sean Ga	llagher, Richard Sesek, Mark Schall and	Rong Huangfu		
ase cite this paper to	support the authors:			

So Now What?!

Get "Professional" Ergonomics Help

- Onsite Assessments & Recommendations*
 - Detailed analysis
 - Risk to parts of the body
- Awareness Training/Coaching*
- Engineer/Team Training*
- Prevention through Design (PtD) Help*

*From Credentialed Ergonomists

What Does (PtD) Do?

Skips "administrative" controls Focuses on design & development phase

How Does PtD Work?

Looks long-term

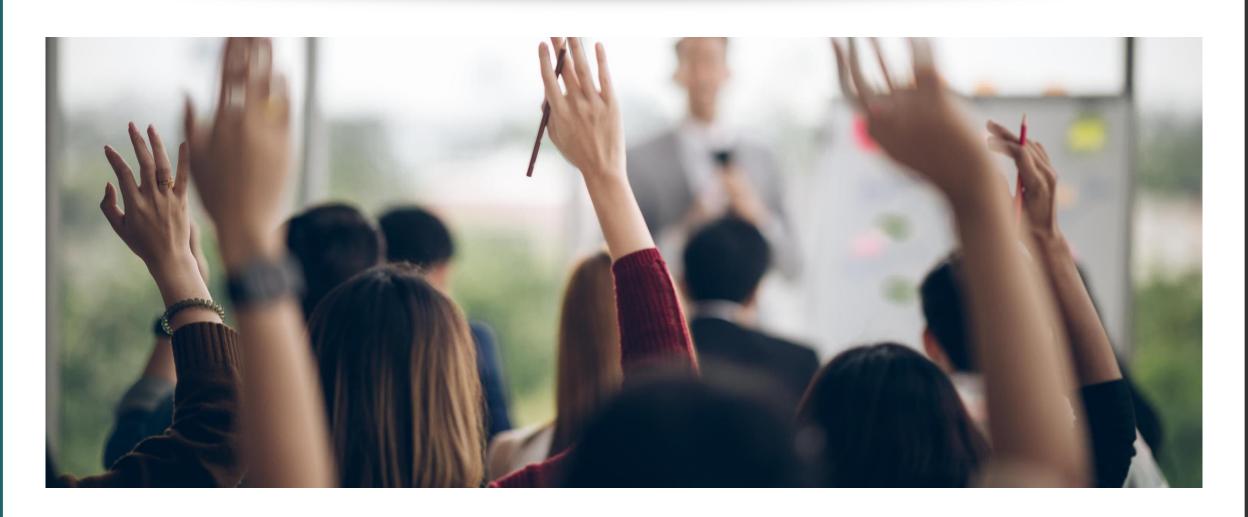
- Reduces variability
- Process control

Increases successful outcomes

How Do We Do PtD?

Training of engineers designing/spec'ing out equipment & processes

Formal ergonomics assessments of projects


- Not just a "cursory" look
- Before equipment ordered
- Before construction

Training cross-functional teams

Timothy Pottorff

(The "Ergo Tim!")

P: (847) 921-3113

E: t.pottorff@qp3ergosystems.com

