The concept of product standardization holds a crucial role in the realm of manufacturing, particularly for companies with numerous facilities and a wide array of equipment suppliers. The absence of well-defined standards for components integrated into new capital equipment can lead to escalated purchasing expenses, heightened manufacturing outlays, increased maintenance costs, and more demanding training requirements.
Sensors and cables must be considered for these reasons:
- A multitude of manufacturers of both sensors and cables, which can lead to a myriad of choices.
- Product variations from each manufacturer in terms of product specifications and features, which can complicate the selection process.
For example, inductive proximity sensors all share the fundamental function of detecting objects. But based on their specific features, some are more suitable for specific applications than others. The situation is mirrored in the realm of cables. Here we look at some of the product features to consider:
Inductive Proximity Sensors
- Style: tubular or block
- Size and length
- Electrical characteristics
- Shielded or unshielded
- Sensing range
- Housing material
- Sensing Surface
Cables
- Connector size
- Length
- Number of pins & conductors
- Wire gage
- Jacket material
- Single or double ended
In the absence of standardized norms, each equipment supplier might opt for its favorite source, often overlooking the impact on the end user. This can lead to redundancies in inventories of sensor and cable spare parts and even the use of components that are not entirely suited for the manufacturing environment. The ripple effect of this situation over time can result in diminished operational efficiency and high inventory carrying costs.
Once the selection and purchasing of sensors and cables are standardized, the management of inventory costs will coincide. Overhead expenses related to purchasing, stocking, picking, and invoicing will also go down. The process becomes more efficient when standardized components and materials that are readily available are employed, resulting in reduced inventory levels. Moreover, standardization with the right material selection contributes to decreased manufacturing downtimes.
Also, this transition empowers companies to reassess their existing inventory of cable and sensor spare parts. Through the elimination of redundancy and the elevation of equipment performance, the physical footprint of spare parts inventory can be significantly diminished. Executed adeptly, the act of standardization not only simplifies supply chain management but also extends the mean time between failures while concurrently reducing the mean time taken for repairs.